
The Use of Semantic-based Predicates Implication to

Improve Horizontal Multimedia Database Fragmentation

Fekade Getahun, Solomon Atnafu
Department of Computer Science, Faculty of Informatics

Addis Ababa University, 1176 Addis Ababa, Ethiopia

{fekadeg, satnafu}@cs.aau.edu.et

Joe Tekli, Richard Chbeir
LE2I-CNRS Laboratory, University of Bourgogne

21078 Dijon Cedex France

{joe.tekli, richard.chbeir}@u-bourgogne.fr

ABSTRACT

Database fragmentation allows reducing irrelevant data accesses

by grouping data frequently accessed together in dedicated

segments. In this paper, we address multimedia database

fragmentation to take into account the rich characteristics of

multimedia objects. We particularly discuss multimedia primary

horizontal fragmentation and focus on semantic-based textual

predicates implication required as a pre-process in current

fragmentation algorithms in order to partition multimedia data

efficiently. Identifying semantic implication between similar

queries (if a user searches for the images containing a car, he

would probably mean auto, vehicle, van or sport-car as well) will

improve the fragmentation process. Making use of the

neighborhood concept in knowledge bases to identify semantic

implications constitutes the core of our proposal. A prototype has

been implemented to evaluate the performance of our approach.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Storage –

Record Classification; Information Search and Retrieval – Search

Process; H.2.7 [Database Management]: Database Administration;

H.2.8 [Database Management]: Database Applications; H.2.5

[Database Management]: Heterogeneous Databases; H.2.4 [Database

Management]: Systems.

General Terms
Algorithms, Measurement, Performance, Design, Experimentation.

Keywords

Multimedia Retrieval, Horizontal Fragmentation, Data Partition,

Data implication

1. INTRODUCTION
Multimedia applications emerging in distributed environments,

such as the web, create an increasing demand on the performance

of multimedia systems, requiring new data partitioning techniques

to achieve high resource utilization and increased concurrency

and parallelism. Several continuing studies are aimed at building

distributed MultiMedia DataBase Management Systems

MMDBMS [8]. Nevertheless, most existing systems lack a formal

framework to adequately provide full-fledge multimedia

operations. Traditionally, fragmentation techniques are used in

distributed system design to reduce accesses to irrelevant data,

thus enhancing system performance [4]. In essence, fragmentation

consists of dividing the database objects and/or entities into

fragments, on the basis of common queries accesses, in order to

distribute them over several distant sites. While partitioning

traditional databases has been thoroughly studied, multimedia

fragmentation has not yet received strong attention. In this

paper, we address primary horizontal fragmentation (cf. Section 2)

in distributed multimedia databases.

We particularly address semantic-based predicates implication

required in current fragmentation algorithms, such as

Make_Partition and Com_Min [1, 13, 14], in order to partition

multimedia data efficiently. The need of such semantic-based

implication is emphasized by the fact that annotations and values

describing the same object, during the storage or retrieval of

multimedia data, could be interpreted with largely different

meanings. For example, if a user searches for the images

containing a car, he would probably mean auto, vehicle, van or

sport-car as well. Therefore, it is obvious that semantic

implication between such similar values will improve the

fragmentation process (and more particularly will impact the

choice of minterms as we will see in the remaining sessions). The

contribution of the paper can be summarized as follows: i)

introducing algorithms for identifying semantic implications

between predicate values, ii) introducing an algorithm for

identifying semantic implications based on predicate operators,

iii) putting forward an algorithm for identifying implications

between semantic predicates on the basis of operator and value

implications, iv) developing a prototype to test and validate our

approach.

The remainder of this paper is organized as follows. Section 2

briefly reviews the background and related work in DB

fragmentation. In Section 3, we present a motivation example.

Section 4 is devoted to define the concepts to be used in our

approach. In Section 5, we detail our semantic implication

algorithms and their usage in the multimedia fragmentation

process. Section 6 briefly presents our prototype. Finally, Section

7 concludes this work and draws some ongoing research

directions.

2. BACKGROUND AND RELATED WORK
Fragmentation techniques for distributed DB systems aim to achieve

effective resource utilization and improved performance [20]. This

is addressed by removing irrelevant data accessed by applications

and by reducing data exchange among sites [21]. In this section, we

briefly present traditional database fragmentation approaches, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MS’07, September 28, 2007, Augsburg, Bavaria, Germany.

Copyright 2007 ACM 978-1-59593-782-7/07/0009...$5.00.

focus on horizontal fragmentation algorithms. We also report recent

approaches targeting XML as well as multimedia data

fragmentation.

In essence, there are three fundamental fragmentation strategies:

Horizontal Fragmentation (HF), Vertical Fragmentation (VF) and

Mixed Fragmentation (MF). HF underlines the partitioning of an

entity/class in segments of tuples/objects verifying certain criteria.

The generated horizontal fragments have the same structure as the

original entity/class [14]. VF breaks down the logical structure of an

entity/class by distributing its attributes/methods over vertical

fragments, which would contain the same tuples/objects with

different attributes [21]. MF is a hybrid partitioning technique

where horizontal and vertical fragmentations are simultaneously

applied on an entity/class [13].

To the best of our knowledge, two main algorithms for the PHF of

relational DBMS are provided in the literature: Com_Min

developed by Oszu and Valduriez [14] and Make_Partition

Graphical Algorithm developed by Navathe et al. [12] (used

essentially for vertical fragmentation). The Com_Min algorithm

generates, from a set of simple predicates applied to a certain

entity, a complete and minimal set of predicates used to determine

the minterm fragments corresponding to that entity. A minterm is

a conjunction of simple predicates [1] associated to a fragment.

Make_Partition generates minterm fragments by grouping

predicates having high affinity towards one another. The number

of minterm fragments generated by Make_Partition is relatively

smaller than the number of Com_Min minterms [13] (the number

of minterms generated by Com-Min being exponential to the

number of simple predicates considered). Similarly, there are two

main algorithms for the PHF of object oriented DBMS: one

developed by Ezeife and Barker [4] using Com_Min [14], and the

other developed by Bellatreche et al. [1] on the basis of

Make_Partition [12]. The use of Com_Min or Make_Partition is

the major difference between them.

Recent works have addressed XML fragmentation [18], [6] due to

the various XML-oriented formats available on the web. The usage

of XPaths and XML predicates forms the common basis of all these

studies. Yet, XML fragmentation methods are very specific and

hardly applicable to multimedia databases.

One recent approach is provided by Saad et al. in [17] to address

multimedia database fragmentation. The authors here discuss

multimedia primary horizontal fragmentation and provide a

partitioning strategy based on the low-level features of multimedia

data (e.g. color, texture, shape, etc., represented as complex feature

vectors). They particularly emphasize the importance of multimedia

predicates implications in optimizing multimedia fragments.

3. MOTIVATION
In order to fragment multimedia databases, several issues should

be studied and extended. Multimedia queries contain new

operators handling low-level and semantic features. These new

operators should be considered when studying predicates and

particularly predicate implications [17]. For example, let us

consider the following predicates used to search for videos in the

movie database IMDB1.

1 Available at http://www.imdb.com/

Table 1. Semantic predicates

Predicate Attribute Operator Value

P1 Keywords = “Football”

P2 Keywords = “Tennis”

P3 Keywords = “Sport”

P4 Location = “Coliseum”

P5 Location Like % “Rome”

In current fragmentation approaches, these predicates are considered

different and are analyzed separately. Nonetheless, a multimedia

query consisting of P1 and P2 would retrieve movies belonging to

the result of P3, the value/concept Sport encompassing in its

semantic meaning Football and Tennis. Thus, we can say that P1

and P2 imply P3 (P1, P2 P3). Consequently, the fragmentation

algorithm should only consider P3, eliminating P1 and P2 while

generating fragments. A similar case can also be identified with P4

and P5. The value/concept Rome covers in its semantic meaning

Coliseum. However, the operator used in P4 is not the same as that

utilized in P5, which raises the question of operator implication.

Since the operator Like % covers in its results those of the operator

equal (Like % returning results that are identical or similar to a given

value, where equal returns only the results identical to a certain

value), the results of P5 would cover those returned by P4. Hence,

we can deduce that P4 implies P5 (P4 P5). As a result, the

fragmentation algorithm should only consider P5, disregarding P4.

Note that ignoring such implications between predicates can lead, in

multimedia applications, to higher computation costs when creating

fragments, bigger fragments which are very restrictive for

multimedia storage, migration, and retrieval, as well as data

duplication on several sites [17].

In [1, 13], the authors have highlighted the importance of

implication, but have not detailed the issue. As mentioned before,

the authors in [17] have only addressed implications between low-

level multimedia predicates (based on complex feature vectors). In

this study, we go beyond low-level features provided in [17] and

present a complementary semantic implication approach

4. PRELIMINARIES
In the following, we define the major concepts used in our approach.

We particularly detail the notions of Knowledge Base (KB) and

Neighborhood (N) which will be subsequently utilized in identifying

the implications between semantic predicates.

4.1 Basic Definitions
Def. 1 - Multimedia Object: is depicted as a set of attribute (ai) and

value (vi) doublets: O {(a1, v1), (a2, v2), … , (an, vn)}. Multimedia

attributes and values can be simple (numeric or textual fields),

complex (color histogram, texture, shape, etc.) or contain raw data

(BLOB files) of multimedia objects. Note that in horizontal

multimedia fragmentation, multimedia objects constitute the basic

reference units (similarly to ‘objects’ in object oriented DB

partitioning and ‘tuples’ in relational DB fragmentation).

Def. 2 - Multimedia Type: allocates a set of attributes used to

describe multimedia objects corresponding to that type [17]. Two

objects, described by the same attributes, are of the same type.

Def. 3 - Multimedia Query: is written as follows [1, 17]: q =

{(Target clause), (Range clause), (Qualification clause)}

 Target clause: contains multimedia attributes returned by the

query,

 Range clause: gathers the entities (tables/classes) accessed by

the query, to which belong target clause and qualification

clause attributes,

 Qualification clause: is the query restriction condition, a

Boolean combination of predicates, linked by logical

connectives , , .

Def. 4 - Multimedia predicate: is defined as P = (A V) , where:

 A is a multimedia attribute or object,

 V is a value (or a set of values) in the domain of A,

 θ is a low-level multimedia operator (Range and KNN

operators), a comparison operator θc (=, , ≤, , ≥, ≠, like) or a

set operator θs (in and θcqualifier where the quantifiers are:

any, some, all).

4.2 Knowledge Base
In the fields of Natural Language Processing (NLP) and Information

Retrieval (IR), knowledge bases (thesauri, taxonomies and/or

ontologies) provide a framework for organizing entities

(words/expressions [9, 15], generic concepts [3, 16], web pages

[10], etc.) into a semantic space. In our approach, we employ

knowledge bases as a reference for identifying semantic implications

between predicates. As shown in the motivating example,

implication between semantic predicates relies on the implications

between corresponding values and operators. Hence, two types of

knowledge bases are used here: i) value-based: to represent the

domain values commonly used in the application, and ii) operator-

based: to organize operators used with semantic-based predicates.

We will also give the semantic relations commonly used in the

literature [9, 15, 19], to organize entities and concepts in a KB. We

detail them below.

4.2.1 Value Knowledge Base
In our study, a Value Knowledge Base (VKB) is domain-oriented and

comes down to a hierarchical taxonomy with a set of concepts

representing groups of words/expressions (which we identify as

value concepts), and a set of links connecting the values,

representing semantic relations2.

As in WordNet3, we consider that a VKB concept consists of a set of

synonymous words/expressions such as {car, auto, automobile}.

Value concepts are connected together via different semantic

relations, which will be detailed subsequently. Formally, VKB=(Vc,

E, R, f) where:

 Vc is the set of value concepts (synonym sets as in WordNet

[Miller 1990]).

2 However, the building process of the value knowledge base is

out of the scope of this paper.

3 WordNet is an online lexical reference system (taxonomy),

where nouns, verbs, adjectives and adverbs are organized into

synonym sets, each representing a lexical concept [11, 19].

 E is the set of edges connecting the value concepts, where E

 c cV ×V

 R is the set of semantic relations, R = {Ω, , , , }

(cf. Table 2), the synonymous words/expressions being

integrated in the value concepts.

 f is a function designating the nature of edges in E, f:E R.

4.2.2 Operator Knowledge Base
Operators should also be considered when studying the implication

between semantic predicates. Therefore, an operator knowledge base

of four descriptors OKB=(Oc, E, R, f) is also defined where:

 Oc is the set of operator concepts, consisting of mono-valued

comparison operators θc (=, ≠, >, <4, and like) as well as multi-

valued ones θs (in and θcqualifier where the quantifiers are:

any, some, all).

 E is the set of edges connecting the operators, where E

 c cO ×O .

 R is the set of semantic relations, R={Ω, , , , }.

 f is a function designating the nature of edges in E, f:E R

(cf. Figure 1).

4 and are considered as single operators put together using the

Boolean operator OR.

Figure 1. Sample value knowledge base with multiple root

concepts

We designed the operator knowledge base OKB as shown in Figure

2.

Multi-valued operator taxonomy Mono-valued operator taxonomy

Figure 2. Our proposed operator knowledge base

In the mono-valued operator taxonomy, we can particularly

observe that the pattern matching operators Like and Not Like

(considered as antonyms) make use of the parameters ‘_’ and ‘%’,

to represent one and zero/multiple optional characters

respectively. Hence, we represent this fact by a semantic IsA

relation5 following these operators, i.e. Like_ Like% and Not

Like_ Not Like%. On the other hand, ‘<’ and ‘>’ implicitly

denote the operator ‘≠’ (commonly represented by < >), thus are

considered as sub-operators of this later.

In the multi-valued operator taxonomy, the any and some

quantifiers are considered as synonyms, as well as the operators

≠All and Not In, and =Any (or Some) and In. The >All and <All

operators are considered as sub-operators of ≠All (like mono-

valued operators) and thus are linked to this later using IsA

relations. In addition, the >All and >Any operators are linked

together because if the condition is valid for all comparison

values, it must be for any value inside the comparison set.

Likewise for <All and <Any, and ≠All and ≠Any.

4.3 Semantic Relations
Hereunder, we develop the most popular semantic relations

employed in the literature, which are included in the WordNet

knowledge base:

- Synonym (≡): Two words/expressions/operators are

synonymous if they are semantically identical, that is if the

substitution of one for the other does not change the initial

semantic meaning.

- Antonym (Ω): The antonym of an expression is its negation.

- Hyponym (): It can also be identified as the

subordination relation, and is generally known as the Is

Kind of relation or simply IsA.

- Hypernym (): It can also be identified as the super-

ordination relation, and is generally known as the Has Kind

of relation or simply HasA.

- Meronym (): It can also be identified as the part-whole

relation, and is generally known as PartOf (also MemberOf,

SubstanceOf, ComponentOf, etc.).

- Holonym (): It is basically the inverse of Meronym, and

is generally identified as HasPart (also HasMember,

HasSubstance, HasComponent, etc.).

Table 2 reviews the most frequently used semantic relations along

with their properties [9, 15, 19]. Note that the transitivity property

is not only limited to semantic relations of the same type and

could also exist between heterogeneous relations. For example:

 Brake system car and car ≡ automobile transitively

infer Brake system automobile.

 ABS Brake system and Brake system car

transitively infer ABS car (Figure 1).

Formally, let Ci, Cj and Ck be three concepts connected via

semantic relations Rij and Rjk in a given KB. Table 3 details the

transitivity properties for all semantic relations defined in the

previous subsections, identifying the resulting relation Rik

transitively connecting concepts Ci and Ck.

5 Relations will be detailed in the next subsection.

Europe

Paris

Eiffel Tower

Rome

Coliseum

America

New York

Statue of Liberty

Site

ABS

Windshield

Brake System

Value concept (Synonym Set)

Like %

Like _

=; Like

Not Like %

Not Like _

≠; Not Like

> <

≠ Any; ≠ Some

≠ All; Not In

>All < All

=Any; =Some; In

< Any; < Some >Any; >Some

Operator concept (Synonymous operators)

Hyponym/Hypernym relations (depending on the direction)

Meronym/Holonym relations (depending on the direction)

Antonym relation

Car; auto;

automobile

Sedan

Coupe

Plane; Airplane;

Aircraft

Jet Helicopter Windscreen

Vehicle

Machine

Wheel

Tire

Meronym/Holonym relations (depending on the direction)

Hyponym/Hypernym relations (depending on the direction)

4.4 Neighborhood
In our approach, the neighborhood notion is used to compute the

implication between values, operators, and consequently

predicates.

Table 2. Semantic relations

 Property

Relation
Symbol Reflexive Symmetric Transitive

Synonym ≡

Antonym Ω

Hyponym

Hypernym

Meronym

Holonym

Table 3. Transitivity between relations

 Rj k

 Ri j
≡ Ω

≡ ≡ Ω

Ω Ω ≡ Ω Ω

 Ω

 Ω

The implication neighborhood of a concept Ci is defined as the

set of concepts {Cj}, in a given knowledge base KB, related with

Ci via the synonym (≡), hyponym () and meronym ()

semantic relations, directly or via transitivity. It is formally

defined as:

 / , ,()
R

j i jKB i C C R C and RN C (1)

When applying the neighborhood concept to some value

concepts in Figure 1, we obtain the following implication

neighborhood examples:

 , ,() { }
KBV car car auto automobileN

 , () { }
KBV ABS ABS brake systemN

 , , ,() { }
KBV tire tire wheel vehicle machineN

(transitivity between and)

Moreover, we define the global implication neighborhood of a

concept to be the union of each implication neighborhood with

respect to the synonym (≡), hyponym () and meronym ()

relations:

 , ,() () /
KB KB

R

i iN C N C R (2)

Note hereunder the corresponding global neighborhoods of the

same examples:

 , , , ,() { , , }

KBV ABS ABS brake system car auto automobile vehicle machineN

 , , , ,() () () () = { }

KB KB KB KBV V V V car auto automobile vehicule machineN car N car N car N car

Similarly, the implication neighborhood can be applied to

operator concepts:

 The global neighborhood of the Like

operator: , _, %() { , }
KBO Like Like Like LikeN .

 The global neighborhood of ≠All:

, , ,() { }
KBO All All Not In Any SomeN .

 The global implication neighborhood of >All:

, , , , ,() { , }
KBO All All Any Some All Not In Any SomeN .

5. SEMANTIC IMPLICATION BETWEEN

PREDICATES
As finding implication between predicates is crucial to cutback

the number of predicates involved in the fragmentation process

[1, 15], when a predicate Pi implies a predicate P j (denoted by Pi

 Pj), Pi can be removed from the minterm fragment to which

it belongs and can be replaced by P j. In the following, we detail

the rules that can be used to determine implication between

semantic predicates. Therefore, we develop value and operator

implications before introducing our predicate implication

algorithm. Our Semantic Implication Algorithm (SPI) is

complementary to that developed in [17] and thus could be

coupled with its overall process (cf. Figure 3) in order to enable

relevant multimedia fragmentation. Due to the space limitation,

value and operator neighborhood computation will not be

detailed here since the main definitions have been already

covered previously.

Fragmentation_pre-processing () // Developed in [Saad et al. 2006] to the exception

 // of semantic implication.

Begin

Multimedia_Types_Classification() //Classifying multimedia objects according to their types

For each multimedia Type

Predicates_Grouping() //Grouping low-level and semantic predicates together

Multimedia_Predicates_implication() // Low-level predicates implications

Semantic_Predicates_Implication() // Contribution of our study.

End For

End

Figure 3. Multimedia fragmentation pre-processing phase

introduced in [17], which is to be executed prior to applying

the classic fragmentation algorithms

5.1 Value Implication
A value Vi implies Vj if the corresponding value concepts Vci and

Vcj are such as the global neighborhood of Vci includes that of Vcj

in the used value knowledge base:

 () ()
KB KBi j V j V iV V If N Vc N Vc (3)

Note that when Vi and Vj are synonyms, that is when Vci and Vcj

designate the same value concept (e.g. car and automobile),

implication exists in both directions: Vi Vj and Vj Vi.

Known as equivalence implication, it is designated as Vi Vj.

 () ()
KB KBi j V i V jc cV V If N V N V (4)

Our Value_Implication algorithm is developed in Figure 4. The

algorithm returns values comprised in {0, -1, 1, 2} where:

 ‘0’ denotes the implication absence between the compared

values,

 ‘-1’ designates that value Vj implies Vi,

 ‘1’ designates that value Vi implies Vj,

 ‘2’ designates that values Vi and Vj are equivalent.

A special case of value implication to be considered is when sets of

values are utilized in multimedia predicates. This occurs when set

operators come to play (e.g. Keywords = ANY {“Eiffel Tower”,

“Coliseum”} and Keywords = ANY {“Paris”, “Rome”}). The

algorithm for determining the implication between two sets of

values is developed in Figure 6. It considers each set of values in

isolation and, for each value in the set, computes the neighborhood

of the value. Subsequently, it identifies the union of all the

neighborhoods of values for the current set (cf. Figure 6, lines 1-7),

and compares the ‘unioned’ neighborhoods of the two sets being

treated so as to determine the implication (cf. Figure 6, lines 8-17).

In other words, when comparing sets VS1 and VS2:

 If |VS1| < |VS2| and all values of VS2 imply (or are equivalent

to) those of VS1, then the set VS2 implies VS1 (i.e. the

neighborhood of VS2 includes that of VS1).

 If |VS1| > |VS2| and all values of VS1 imply (or are equivalent

to) those of VS2, then the set VS1 implies VS2 (i.e. the

neighborhood of VS1 includes that of VS2).

 Otherwise if |VS1| = |VS2|, then:

 VS1 is equivalent to VS2 when all values of VS1 are

equivalent to those of VS2 (i.e. the neighborhoods of VS1

and VS2 are identical).

 VS1 implies VS2 when all values of VS1 imply those of

VS2, i.e. the neighborhood of VS1 encompasses that of

VS2:)() (
KB KBV 2 V 1N VS N VS

 VS2 implies VS1 when all values of VS2 imply those of

VS1, i.e.)() (
KB KBV 1 V 2N VS N VS

 Otherwise, there is no implication between VS1 and VS2.

For example, applying Value Set implication to sets VS1 = {“Eiffel

Tower”, “Coliseum”} and VS2 = {“Paris”, “Rome”} yields VS1

 VS2 having:

 |VS1| = |VS2|

 all values of VS1 imply those of VS2: Eiffel Tower

Paris and Coliseum Rome (cf. Figure 1).

5.2 Operator Implication
Similarly, an operator θi implies θj (θi θj) if the corresponding

operator concepts Oci and Ocj are such as the global neighborhood

of θi includes that of θj, following the operator knowledge base

defined in Section 4.1.2. We formally write it as:

 () ()
KB KBi j O j ic cIf N O N O (5)

As well, when θi and θj are synonyms (e.g. =any and =some

following θKB), equivalence implication exists in both directions:

 () ()
KB KBi j O i O jc cIf N O N O (6)

The Operator_Implication algorithm is developed in Figure 5. It

returns values comprised in {0, -1, 1, 2}:

 ‘0’ denoting the lack of implication between the

operators’ values,

 ‘-1’ designating that operator θj implies θi,

 ‘1’ designating that operator θi implies θj,

 ‘2’ when operators θi and θj are equivalent.

5.3 Predicate Implication

 and

P P and

 and

i j i j

i j i j i j

i j i j

θ θ V V , or

if θ θ V V , or

θ θ V V

 (7)

Let Pi = Ai θi Vi and Pj = Aj θj Vj be two predicates employing

comparison or set operators. The implication between Pi and Pj,

denoted as Pi Pi, occurs if the operator and value (set of values)

of Pi (θi and Vi) respectively imply those of Pj (θj and Vj), or the

value (set of values) part of Pi (Vi) implies that of Pj (Vj) when

having equivalent operators.

When both pairs of values (sets of values) and operators are

equivalent, the corresponding predicates are equivalent as well:

P P and
i j i j i j

if θ θ V V (8)

Our Semantic Predicate Implication (SPI) algorithm, developed in

Figure 7, utilizes the preceding rules to generate the semantic

predicate Implications Set (IS) for a given multimedia type. The

implications are designated as doublets (Pi Pj). Note that in SPI,

the input parameters of Value_Implication and

Value_Set_Implication between brackets, i.e. Vi and Vi+1, designate

single values and set values respectively following the considered

predicate (cf. Definition 4).

Value Implication:

Input: Vi , Vj , VKB // VKB is the reference value KB.

Output: {0, -1, 1, 2} // A numerical value indicating

 // if Vi Vj (0), Vj Vi (-1) ,

 // if Vi Vj (1) or if Vi Vj (2)

Begin 1

If (() ()
V i V j

KB KB
N Nc cV V)

Return 2 // synonyms, Vi Vj

Else If () ()
V j V i

KB KB
N Nc cV V

Return 1 // Vi Vj 5

Else If () ()
V i V j

KB KB
N Nc cV V

Return -1 // Vj Vi

Else
Return 0 // There is no implication

End If // between Vi and Vj, Vi Vj 10

End

Figure 4. Identifying semantic implications

between textual values

5.4 Algorithm Complexity
The computational complexity of our Semantic Predicate

Implication (SPI) is estimated on the basis of the worst case

scenario. Suppose nc represents the number of concepts in the

concept knowledge base considered, d the maximum depth in the

concept knowledge base considered, npv the number of user

predicates with single values, npvs the number of predicates with

value sets, and nv the maximum number of values contained in a

value set. SPI algorithm is of time complexity O(npv
2 nc d+

npvs
2 nv nc d) since:

 The neighborhood of a concept is generated in O(nc d)

time, which comes down to the complexity of algorithm

Value_Implication.

 The neighborhood of an operator is generated in constant

time: O(1), which comes down to the time complexity of

algorithm Operator_Implication. Therefore, identifying

implications for predicates with simple values is of time

complexity O(npv
2 nc d).

 The Value_Set_Implication algorithm is of complexity

O(nv nc d)

Subsequently, identifying semantic implications for predicates with

value sets is of time complexity O(npvs
2 nv nc d).

Operator Implication:

Input: θi , θj , OKB // OKB is the reference operator KB

Output: {0, -1, 1, 2} // A numerical value indicating

 // if θi θj (0), if θj θi (-1)

 // if θi θj (1), or if θi θj (2)

Begin 1

 If(() ()
O i O j

KB KB
cO OcN N)

Return 2 // synonyms, θi θj

Else If () ()
O j O i

KB KB
c cO ON N

Return 1 // θi θj 5

Else If () ()
O i O j

KB KB
c cO ON N

Return -1 // θj θi

Else

Return 0 // There is no implication between

 End If // θi and θj, θi θj 10

End

Figure 5. Identifying implications between operators

Value Set Implication:

Input: VS1, VS2, VKB // value sets to be compared w.r.t. VKB

Output: {0, -1, 1, 2}

Begin 1

 For each value Vi in VS1 // Neighborhood of VS1

 () = () ()
V V V

KB KB KB
N N N

1 1 i
VS VS Vc

 End for

 For each value Vj in VS2 // Neighborhood of VS2 5

 () = () ()
V V V

KB KB KB
N N N

2 2 j
VS VS Vc

 End For

If () ()
V 1 V 2

KB KB
N NVS VS

Return 2 // VS1 VS2

Else If () ()
V 2 V 1

KB KB
N NVS VS 10

Return 1 // VS1 VS2

Else If () ()
V 1 V 2

KB KB
N NVS VS

Return -1 // VS2 VS1

Else
Return 0 // There’s no implication 15

End If // between VS1 and VS2, VS1 VS2

End

Figure.6 Value sets implication algorithm

6. IMPLEMENTATION

6.1 Prototype
To validate our approach, we have implemented a C# prototype

entitled “Multimedia Semantic Implication Identifier” (MSI2)

encompassing:

 A relational database, storing multimedia objects via

Oracle 9i DBMS,

 Relational tables for storing the reference value

knowledge base VKB and the operator knowledge base

OKB. Note that OKB is constant (cf. Figure 2),

 An interface allowing users to formulate multimedia

queries.

In Figure 8, we show how the prototype accepts a set of input

multimedia queries. Automatic processes subsequently calculate

query access frequencies, identify corresponding predicates, and

compute for each multimedia type (cf. Definition 2) its Predicate

Usage Matrix (PUM) and its Predicate Affinity Matrix (PAM),

introduced in [1, 15]. The PAM is used to underline the affinity

between predicates, implication being a special kind of affinity.

The PUM and PAM make up the inputs to the primary horizontal

partitioning algorithm: Make_Partition [15] or Com_Min [14].

6.2 Timing Analysis

We have shown that the complexity of our approach (SPI and

underlying algorithms) simplifies to O(npvs
2 nv

2 nc d). It is

quadratic in the size of user predicates (npvs), value set

cardinalities (nv
2), and the size of the value knowledge base VKB

considered (nc d). We have verified those results experimentally.

Timing analysis is presented in Figure 9. The experiments were

carried out on Pentium 4 PC (with processing speed of 3.0 GHz,

504 MB of RAM). Note that in these experiments, a special

process was developed using C# for timing analysis. Large

amounts of semantic predicates (that uses our proposed operator

knowledge base provided in Section 4.5.2) were generated in a

random fashion, predicate numbers as well as value-set

cardinalities being under strict user control. Multiple value

knowledge bases with varying depth and number of concepts were

also considered. Similarity computations and timing analysis were

done repeatedly. In both graphs of Figure 9, the x-axis represents

the number of predicates and y-axis shows the time needed to

compute semantic implications. One can see from the result that

the time needed to compute semantic implications grows in a

polynomial (quadratic) fashion with the number of predicates

involved. Figure 9.a shows the impact of the value-set

cardinalities, whereas Figure 9.b reflects the effect of the VKB size.

Recall that the reference value knowledge base VKB and operator

knowledge base OKB are stored in a relational database and are

queried for each value and operator in the concerned predicates

when identifying implication. As a result, querying the VKB

knowledge base for each predicate value requires extra time

(database access time) and hence contributes to increasing time

complexity. Therefore, we believe that overall system

performance would improve if the reference VKB knowledge base

could fit in primary memory.

Semantic Predicate Implication (SPI):

Input: P , VKB, OKB // P is the set of predicates utilizing semantic

operators,

 // applied on a given multimedia type to be

fragmented.

Output: IS // Set of semantic predicate implications.

Variables: Implication Operator , ImplicationValue

Begin 1

For each Pi in P

For each Pi+1 in P

ImplicationOperator = Operator_Implication(θi , θi+1, OKB)

If (θi , θi+1 ε { θc any, θc some, θc all, In} // Set operators 5

ImplicationValue = Value_Set_Implication (Vi , Vi+1, VKB)

Else // Mono-valued operators

ImplicationValue = Value_Implication(Vi , Vi+1, VKB)

End If

If (ImplicationOperator == 2) // θi θi+1 10

If (ImplicationValue == 2) // Vi Vj

IS = IS (Pi Pj)

 Else If (ImplicationValue == 1) // Vi Vj

IS = IS (Pi Pj)

 Else If (ImplicationValue == -1) // Vj Vi 15

IS = IS (Pj Pi)

End If

Else If (ImplicationOperator == 1) // θi θj

If(ImplicationValue == 2 or ImplicationValue == 1) // θi θj

IS = IS (Pi Pj) 20

End If

Else If (ImplicationOperator == -1) // θj θi

If (ImplicationValue == 2 or ImplicationValue == -1) // Vj

Vi

IS = IS (Pj Pi)

EndIf 25

End If

End For

End For

End

Figure 7. Algorithm SPI for identifying the semantic

implications between predicates

Figure 8. Screen shot of the MSI

2 PUM and PAM interface.

a. Varying value set cardinalities

b. Varying VKB size (depth and number of concepts)

Figure 9. Timing results regarding the number of predicates,

value set cardinalities, and VKB size

7. CONCLUSION
In this paper, we addressed the primary horizontal

fragmentation in multimedia databases and provided a new

approach to be used with existing fragmentation techniques. We

particularly studied semantic-based predicates implication

required in current fragmentation algorithms in order to

partition multimedia data efficiently. We put forward a set of

algorithms for identifying implications between semantic

predicates on the basis of operator and value implications.

Operator implications are identified utilizing a specific operator

knowledge base developed in our study. On the other hand,

value implications are discovered following domain-oriented or

generic value concept knowledge bases such as WordNet. We

developed a prototype to test our approach.

In the near future, we aim to thoroughly assess our

approach’s efficiency via a comparative study so as to show the

improvement in fragmentation quality, i.e. the improvement in

data access time, w.r.t. existing fragmentation techniques. Our

future directions include studying derived horizontal

fragmentation of multimedia data, optimizing traditional methods

by taking into account semantic and low-level multimedia

features. Likewise, multimedia vertical fragmentation and XML

fragmentation will also be addressed in upcoming studies. In

addition, we plan on releasing a public version of our prototype

after integrating low-level multimedia implications.

8. REFERENCES
[1] Belatreche L, Karlapalem K, Simonet A., Horizontal class

partitioning in object-oriented databases. 8th Inter. Conf.

on Database and Expert Systems Applications

(DEXA’97), 1997

[2] Bernhard Braunmuller, Efficiently Supporting Multiple

Similarity Queries for Mining in Metric Databases, IEEE

Trans. on Knowledge and Data Engineering, v.13, p.79-

95, 2001

[3] Ehrig M. and Sure Y., Ontology Mapping - an Integrated

Approach. In Proceedings of the 1st European Semantic

Web Symposium, V. 3053 of LNCS, pp. 76-91, Greece,

2004

[4] Ezeife C.I., Barker K., A Comprehensive Approach to

Horizontal Class Fragmentation in a Distributed Object

Based System. J. of Distributed and Parallel Databases, 1,

1995.

[5] Ezeife C.I., Barker K., Distributed Object Based Design:

Vertical Fragmentation of classes. Journal of Distributed

and Parallel DB Systems, 6(4): 327-360, 1998

[6] Gertz M, Bremer J.M., Distributed XML Repositories:

To-Down Design and Transparent Query Processing.

Department of CS, University of California, 2004

[7] Grosky W. I., Managing Multimedia Information in

Database Systems, Communications of the ACM, Vol.

40, No. 12, pp. 72-80, 1997

[8] Kosch H., Distributed Multimedia Database Technologies

Supported by MPEG-7 and MPEG-21, Auerbach

Publications, 280 p., 2004

[9] Lin D., An Information-Theoretic Definition of

Similarity. In Proceedings of the 15th International

Conference on Machine Learning, 296-304, 1998.

[10] Maguitman A. G., Menczer F., Roinestad H. and

Vespignani A., Algorithmic Detection of Semantic

Similarity. In Proc. of the 14th Inter. WWW Conference,

107-116, Japan, 2005

[11] Miller G., WordNet: An On-Line Lexical Database.

Journal of Lexicography, 3(4), 1990.

[12] Navathe B, RA M., Vertical Partitioning for Database

Design: a Graphical Algorithm. 1989 ACM SIGMOND

Conf., Portland, p. 440-450, 1989

[13] Navathe S.B, Karlapalem K, Ra M., A Mixed Partitioning

Methodology for Initial Distributed Database Design.

User queries and corresponding

access frequencies

Predicate Usage matrix

Predicates invoked in the

user queries

Predicate Affinity Matrix

Computer and Software Engineering J., 3(4): 395-426,

1995

[14] Ozsu M.T, Valduriez P., Principals of Distributed

Database Systems, Prentice Hall, 1991

[15] Richardson R. and Smeaton A.F., Using WordNet in a

Knowledge-based approach to information retrieval. In

Proc. of the 17th Colloquium on Information Retrieval,

1995.

[16] Rodriguez M.A., Egenhofer M.J., Determining Semantic

Similarity among Entity Classes from Different

Ontologies. IEEE Transactions on Knowledge and Data

Engineering, Vol.15, n.2, pp. 442-456, 2003

[17] Saad S., Tekli J., Chbeir R. and Yetongnon K., Towards

Multimedia Fragmentation. In Proc. of ADBIS’06,

Greece, September 2006

[18] Sub C., An approach to the model-based fragmentation

and relational storage of XML-documents. Grundlagen

von Datenbanken, 98-102, 2001
[19] WordNet 2.1, A Lexical Database of the English Language.

http://wordnet.princeton.edu/online/, 2005.

[20] Chinchwadkar G.S., Goh A., An Overview of Vertical

Partitioning in Object Oriented Databases. The Computer

Journal, Vol. 42, No. 1, 1999

[21] Baiao F, Mattoso M., A Mixed Fragmentation Algorithm for

Distributed Object Oriented Databases. 9th Inter. Conf. on

Computing Information, Canada, 1998

