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ABSTRACT 

Database fragmentation allows reducing irrelevant data accesses 

by grouping data frequently accessed together in dedicated 

segments. In this paper, we address multimedia database 

fragmentation to take into account the rich characteristics of 

multimedia objects. We particularly discuss multimedia primary 

horizontal fragmentation and focus on semantic-based textual 

predicates implication required as a pre-process in current 

fragmentation algorithms in order to partition multimedia data 

efficiently. Identifying semantic implication between similar 

queries (if a user searches for the images containing a car, he 

would probably mean auto, vehicle, van or sport-car as well) will 

improve the fragmentation process. Making use of the 

neighborhood concept in knowledge bases to identify semantic 

implications constitutes the core of our proposal. A prototype has 

been implemented to evaluate the performance of our approach. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Storage – 

Record Classification; Information Search and Retrieval – Search 

Process; H.2.7 [Database Management]: Database Administration; 

H.2.8 [Database Management]: Database Applications; H.2.5 

[Database Management]: Heterogeneous Databases; H.2.4 [Database 

Management]: Systems. 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 

Multimedia Retrieval, Horizontal Fragmentation, Data Partition, 

Data implication 

1. INTRODUCTION 
Multimedia applications emerging in distributed environments, 

such as the web, create an increasing demand on the performance 

of multimedia systems, requiring new data partitioning techniques 

to achieve high resource utilization and increased concurrency 

and parallelism. Several continuing studies are aimed at building 

distributed MultiMedia DataBase Management Systems 

MMDBMS [8]. Nevertheless, most existing systems lack a formal 

framework to adequately provide full-fledge multimedia 

operations. Traditionally, fragmentation techniques are used in 

distributed system design to reduce accesses to irrelevant data, 

thus enhancing system performance [4]. In essence, fragmentation 

consists of dividing the database objects and/or entities into 

fragments, on the basis of common queries accesses, in order to 

distribute them over several distant sites. While partitioning 

traditional databases has been thoroughly studied, multimedia 

fragmentation has not yet received strong attention.  In this 

paper, we address primary horizontal fragmentation (cf. Section 2) 

in distributed multimedia databases.  

We particularly address semantic-based predicates implication 

required in current fragmentation algorithms, such as 

Make_Partition and Com_Min [1, 13, 14], in order to partition 

multimedia data efficiently. The need of such semantic-based 

implication is emphasized by the fact that annotations and values 

describing the same object, during the storage or retrieval of 

multimedia data, could be interpreted with largely different 

meanings. For example, if a user searches for the images 

containing a car, he would probably mean auto, vehicle, van or 

sport-car as well. Therefore, it is obvious that semantic 

implication between such similar values will improve the 

fragmentation process (and more particularly will impact the 

choice of minterms as we will see in the remaining sessions). The 

contribution of the paper can be summarized as follows: i) 

introducing algorithms for identifying semantic implications 

between predicate values, ii) introducing an algorithm for 

identifying semantic implications based on predicate operators, 

iii) putting forward an algorithm for identifying implications 

between semantic predicates on the basis of operator and value 

implications, iv) developing a prototype to test and validate our 

approach.  

The remainder of this paper is organized as follows. Section 2 

briefly reviews the background and related work in DB 

fragmentation. In Section 3, we present a motivation example. 

Section 4 is devoted to define the concepts to be used in our 

approach. In Section 5, we detail our semantic implication 

algorithms and their usage in the multimedia fragmentation 

process. Section 6 briefly presents our prototype. Finally, Section 

7 concludes this work and draws some ongoing research 

directions. 

2. BACKGROUND AND RELATED WORK 
Fragmentation techniques for distributed DB systems aim to achieve 

effective resource utilization and improved performance [20]. This 

is addressed by removing irrelevant data accessed by applications 

and by reducing data exchange among sites [21]. In this section, we 

briefly present traditional database fragmentation approaches, and 
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focus on horizontal fragmentation algorithms. We also report recent 

approaches targeting XML as well as multimedia data 

fragmentation.  

In essence, there are three fundamental fragmentation strategies: 

Horizontal Fragmentation (HF), Vertical Fragmentation (VF) and 

Mixed Fragmentation (MF). HF underlines the partitioning of an 

entity/class in segments of tuples/objects verifying certain criteria. 

The generated horizontal fragments have the same structure as the 

original entity/class [14]. VF breaks down the logical structure of an 

entity/class by distributing its attributes/methods over vertical 

fragments, which would contain the same tuples/objects with 

different attributes [21]. MF is a hybrid partitioning technique 

where horizontal and vertical fragmentations are simultaneously 

applied on an entity/class [13].  

To the best of our knowledge, two main algorithms for the PHF of 

relational DBMS are provided in the literature: Com_Min 

developed by Oszu and Valduriez [14] and Make_Partition 

Graphical Algorithm developed by Navathe et al. [12] (used 

essentially for vertical fragmentation). The Com_Min algorithm 

generates, from a set of simple predicates applied to a certain 

entity, a complete and minimal set of predicates used to determine 

the minterm fragments corresponding to that entity. A minterm is 

a conjunction of simple predicates [1] associated to a fragment. 

Make_Partition generates minterm fragments by grouping 

predicates having high affinity towards one another. The number 

of minterm fragments generated by Make_Partition is relatively 

smaller than the number of Com_Min minterms [13] (the number 

of minterms generated by Com-Min being exponential to the 

number of simple predicates considered). Similarly, there are two 

main algorithms for the PHF of object oriented DBMS: one 

developed by Ezeife and Barker [4] using Com_Min [14], and the 

other developed by Bellatreche et al. [1] on the basis of 

Make_Partition [12]. The use of Com_Min or Make_Partition is 

the major difference between them. 

Recent works have addressed XML fragmentation [18], [6] due to 

the various XML-oriented formats available on the web. The usage 

of XPaths and XML predicates forms the common basis of all these 

studies. Yet, XML fragmentation methods are very specific and 

hardly applicable to multimedia databases.  

One recent approach is provided by Saad et al. in [17] to address 

multimedia database fragmentation. The authors here discuss 

multimedia primary horizontal fragmentation and provide a 

partitioning strategy based on the low-level features of multimedia 

data (e.g. color, texture, shape, etc., represented as complex feature 

vectors). They particularly emphasize the importance of multimedia 

predicates implications in optimizing multimedia fragments. 

3. MOTIVATION 
In order to fragment multimedia databases, several issues should 

be studied and extended. Multimedia queries contain new 

operators handling low-level and semantic features. These new 

operators should be considered when studying predicates and 

particularly predicate implications [17]. For example, let us 

consider the following predicates used to search for videos in the 

movie database IMDB1.  

                                                                 
1 Available at http://www.imdb.com/ 

Table 1. Semantic predicates 

Predicate Attribute Operator Value 

P1 Keywords  = “Football” 

P2 Keywords  = “Tennis” 

P3 Keywords = “Sport” 

P4 Location  = “Coliseum” 

P5 Location  Like % “Rome” 

In current fragmentation approaches, these predicates are considered 

different and are analyzed separately. Nonetheless, a multimedia 

query consisting of P1 and P2 would retrieve movies belonging to 

the result of P3, the value/concept Sport encompassing in its 

semantic meaning Football and Tennis. Thus, we can say that P1 

and P2 imply P3 (P1, P2   P3). Consequently, the fragmentation 

algorithm should only consider P3, eliminating P1 and P2 while 

generating fragments. A similar case can also be identified with P4 

and P5. The value/concept Rome covers in its semantic meaning 

Coliseum. However, the operator used in P4 is not the same as that 

utilized in P5, which raises the question of operator implication. 

Since the operator Like % covers in its results those of the operator 

equal (Like % returning results that are identical or similar to a given 

value, where equal returns only the results identical to a certain 

value), the results of P5 would cover those returned by P4. Hence, 

we can deduce that P4 implies P5 (P4   P5). As a result, the 

fragmentation algorithm should only consider P5, disregarding P4. 

Note that ignoring such implications between predicates can lead, in 

multimedia applications, to higher computation costs when creating 

fragments, bigger fragments which are very restrictive for 

multimedia storage, migration, and retrieval, as well as data 

duplication on several sites [17]. 

In [1, 13], the authors have highlighted the importance of 

implication, but have not detailed the issue. As mentioned before, 

the authors in [17] have only addressed implications between low-

level multimedia predicates (based on complex feature vectors). In 

this study, we go beyond low-level features provided in [17] and 

present a complementary semantic implication approach 

4. PRELIMINARIES 
In the following, we define the major concepts used in our approach. 

We particularly detail the notions of Knowledge Base (KB) and 

Neighborhood (N) which will be subsequently utilized in identifying 

the implications between semantic predicates. 

4.1 Basic Definitions 
Def. 1 - Multimedia Object: is depicted as a set of attribute (ai) and 

value (vi) doublets: O {(a1, v1), (a2, v2), … , (an, vn)}. Multimedia 

attributes and values can be simple (numeric or textual fields), 

complex (color histogram, texture, shape, etc.) or contain raw data 

(BLOB files) of multimedia objects. Note that in horizontal 

multimedia fragmentation, multimedia objects constitute the basic 

reference units (similarly to ‘objects’ in object oriented DB 

partitioning and ‘tuples’ in relational DB fragmentation). 

 

Def. 2 - Multimedia Type: allocates a set of attributes used to 

describe multimedia objects corresponding to that type [17]. Two 

objects, described by the same attributes, are of the same type.  



Def. 3 - Multimedia Query: is written as follows [1, 17]: q = 

{(Target clause), (Range clause), (Qualification clause)} 

 

 Target clause: contains multimedia attributes returned by the 

query, 

 Range clause: gathers the entities (tables/classes) accessed by 

the query, to which belong target clause and qualification 

clause attributes, 

 Qualification clause: is the query restriction condition, a 

Boolean combination of predicates, linked by logical 

connectives ,  ,    .  

 

Def. 4 - Multimedia predicate: is defined as P = (A  V) , where: 

 A is a multimedia attribute or object, 

 V is a value (or a set of values) in the domain of A, 

 θ is a low-level multimedia operator (Range and KNN 

operators), a comparison operator θc (=, , ≤, , ≥, ≠, like) or a 

set operator θs (in and θcqualifier where the quantifiers are: 

any, some, all). 

4.2 Knowledge Base 
In the fields of Natural Language Processing (NLP) and Information 

Retrieval (IR), knowledge bases (thesauri, taxonomies and/or 

ontologies) provide a framework for organizing entities 

(words/expressions [9, 15], generic concepts [3, 16], web pages 

[10], etc.) into a semantic space. In our approach, we employ 

knowledge bases as a reference for identifying semantic implications 

between predicates. As shown in the motivating example, 

implication between semantic predicates relies on the implications 

between corresponding values and operators. Hence, two types of 

knowledge bases are used here: i) value-based: to represent the 

domain values commonly used in the application, and ii) operator-

based: to organize operators used with semantic-based predicates. 

We will also give the semantic relations commonly used in the 

literature [9, 15, 19], to organize entities and concepts in a KB. We 

detail them below. 

4.2.1 Value Knowledge Base 
In our study, a Value Knowledge Base (VKB) is domain-oriented and 

comes down to a hierarchical taxonomy with a set of concepts 

representing groups of words/expressions (which we identify as 

value concepts), and a set of links connecting the values, 

representing semantic relations2. 

As in WordNet3, we consider that a VKB concept consists of a set of 

synonymous words/expressions such as {car, auto, automobile}. 

Value concepts are connected together via different semantic 

relations, which will be detailed subsequently. Formally, VKB=(Vc, 

E, R, f) where: 

 Vc is the set of value concepts (synonym sets as in WordNet 

[Miller 1990]). 

                                                                 
2  However, the building process of the value knowledge base is 

out of the scope of this paper. 

3 WordNet is an online lexical reference system (taxonomy), 

where nouns, verbs, adjectives and adverbs are organized into 

synonym sets, each representing a lexical concept [11, 19]. 

 E is the set of edges connecting the value concepts, where E 

 c cV ×V  

 R is the set of semantic relations, R = {Ω, , , , } 

(cf. Table 2), the synonymous words/expressions being 

integrated in the value concepts. 

 f is a function designating the nature of edges in E,  f:E R. 

4.2.2 Operator Knowledge Base 
Operators should also be considered when studying the implication 

between semantic predicates. Therefore, an operator knowledge base 

of four descriptors OKB=(Oc, E, R, f) is also defined where: 

 Oc is the set of operator concepts, consisting of mono-valued 

comparison operators θc (=, ≠, >, <4, and like) as well as multi-

valued ones θs (in and θcqualifier where the quantifiers are: 

any, some, all). 

 E is the set of edges connecting the operators, where E 

 c cO ×O . 

 R is the set of semantic relations, R={Ω, , , , }. 

 f is a function designating the nature of edges in E, f:E R 

(cf. Figure 1). 

 

 

                                                                 
4  and  are considered as single operators put together using the 

Boolean operator OR. 



 

Figure 1. Sample value knowledge base with multiple root 

concepts 

 

We designed the operator knowledge base OKB as shown in Figure 

2. 
 

 

 

 
Multi-valued operator taxonomy Mono-valued operator taxonomy 

 

Figure 2. Our proposed operator knowledge base 
 

In the mono-valued operator taxonomy, we can particularly 

observe that the pattern matching operators Like and Not Like 

(considered as antonyms) make use of the parameters ‘_’ and ‘%’, 

to represent one and zero/multiple optional characters 

respectively. Hence, we represent this fact by a semantic IsA  

relation5 following these operators, i.e. Like_  Like% and Not 

Like_  Not Like%. On the other hand, ‘<’ and ‘>’ implicitly 

denote the operator ‘≠’ (commonly represented by < >), thus are 

considered as sub-operators of this later.  

In the multi-valued operator taxonomy, the any and some 

quantifiers are considered as synonyms, as well as the operators 

≠All and Not In, and =Any (or Some) and In. The >All and <All 

operators are considered as sub-operators of ≠All (like mono-

valued operators) and thus are linked to this later using IsA 

relations. In addition, the >All and >Any operators are linked 

together because if the condition is valid for all comparison 

values, it must be for any value inside the comparison set. 

Likewise for <All and <Any, and ≠All and ≠Any. 

4.3 Semantic Relations 
Hereunder, we develop the most popular semantic relations 

employed in the literature, which are included in the WordNet 

knowledge base:  
 

- Synonym (≡): Two words/expressions/operators are 

synonymous if they are semantically identical, that is if the 

substitution of one for the other does not change the initial 

semantic meaning. 

- Antonym (Ω): The antonym of an expression is its negation.  

- Hyponym ( ): It can also be identified as the 

subordination relation, and is generally known as the Is 

Kind of relation or simply IsA.  

- Hypernym ( ): It can also be identified as the super-

ordination relation, and is generally known as the Has Kind 

of relation or simply HasA.  

- Meronym ( ): It can also be identified as the part-whole 

relation, and is generally known as PartOf (also MemberOf, 

SubstanceOf, ComponentOf, etc.).  

- Holonym ( ): It is basically the inverse of Meronym, and 

is generally identified as HasPart (also HasMember, 

HasSubstance, HasComponent, etc.).  
 

Table 2 reviews the most frequently used semantic relations along 

with their properties [9, 15, 19]. Note that the transitivity property 

is not only limited to semantic relations of the same type and 

could also exist between heterogeneous relations. For example: 

 

 Brake system  car and car ≡ automobile transitively 

infer Brake system automobile. 

 ABS Brake system and Brake system  car 

transitively infer ABS  car (Figure 1). 

 
 

Formally, let Ci, Cj and Ck be three concepts connected via 

semantic relations Rij and Rjk in a given KB. Table 3 details the 

transitivity properties for all semantic relations defined in the 

previous subsections, identifying the resulting relation Rik 

transitively connecting concepts Ci and Ck. 

                                                                 
5 Relations will be detailed in the next subsection. 

Europe 

Paris 

Eiffel Tower 

Rome 

Coliseum 

America 

New York 

Statue of Liberty 

Site 

ABS 

Windshield 

Brake System 

Value concept (Synonym Set) 

Like % 

Like _ 

=; Like  

Not Like % 

Not Like _ 

≠; Not Like 

> < 

≠ Any; ≠ Some 

≠ All; Not In 

>All < All 

=Any; =Some; In 

< Any; < Some >Any; >Some 

Operator concept (Synonymous operators) 

Hyponym/Hypernym relations (depending on the direction) 

Meronym/Holonym relations (depending on the direction) 

Antonym relation 

Car; auto; 

automobile 

Sedan 

Coupe 

Plane; Airplane; 

Aircraft 

Jet Helicopter Windscreen 

Vehicle 

Machine 

Wheel 

Tire 

Meronym/Holonym relations (depending on the direction) 

Hyponym/Hypernym relations (depending on the direction) 



4.4 Neighborhood 
In our approach, the neighborhood notion is used to compute the 

implication between values, operators, and consequently 

predicates. 

Table 2. Semantic relations 

        Property 

Relation 
Symbol Reflexive Symmetric Transitive 

Synonym ≡    

Antonym Ω    

Hyponym     

Hypernym     

Meronym     

Holonym     

 

Table 3. Transitivity between relations 

          Rj k       

  Ri j 
≡ Ω     

≡ ≡ Ω     

Ω Ω ≡ Ω Ω     

  Ω       

  Ω       

          

          

 

The implication neighborhood of a concept Ci is defined as the 

set of concepts {Cj}, in a given knowledge base KB, related with 

Ci via the synonym (≡), hyponym ( ) and meronym ( ) 

semantic relations, directly or via transitivity. It is formally 

defined as: 

   /      , ,( )
R

j i jKB i C C R C and RN C    (1) 

When applying the neighborhood concept to some value 

concepts in Figure 1, we obtain the following implication 

neighborhood examples: 

 , ,( ) { }
KBV car car auto automobileN


  

 ,  ( ) { }
KBV ABS ABS brake systemN   

 , , ,( ) { }
KBV tire tire wheel vehicle machineN   

(transitivity between  and ) 

 

Moreover, we define the global implication neighborhood of a 

concept to be the union of each implication neighborhood with 

respect to the synonym (≡), hyponym ( ) and meronym ( ) 

relations:  

 , ,( ) ( ) /  
KB KB

R

i iN C N C R    (2) 

Note hereunder the corresponding global neighborhoods of the 

same examples: 

 
 , , , ,( )  { , , } 

KBV ABS ABS brake system car auto automobile vehicle machineN 
 

 
  , , , ,( ) ( ) ( ) ( ) = { }  

KB KB KB KBV V V V car auto automobile vehicule machineN car N car N car N car




 

Similarly, the implication neighborhood can be applied to 

operator concepts:  

 The global neighborhood of the Like 

operator: , _, %( ) { , }
KBO Like Like Like LikeN   . 

 The global neighborhood of ≠All: 

,  , ,( ) { }
KBO All All Not In Any SomeN     . 

 The global implication neighborhood of >All: 

, , ,  , ,( ) { , }
KBO All All Any Some All Not In Any SomeN        . 

5. SEMANTIC IMPLICATION BETWEEN 

PREDICATES 
As finding implication between predicates is crucial to cutback 

the number of predicates involved in the fragmentation process 

[1, 15], when a predicate Pi implies a predicate P j (denoted by Pi 

  Pj), Pi can be removed from the minterm fragment to which 

it belongs and can be replaced by P j. In the following, we detail 

the rules that can be used to determine implication between 

semantic predicates. Therefore, we develop value and operator 

implications before introducing our predicate implication 

algorithm. Our Semantic Implication Algorithm (SPI) is 

complementary to that developed in [17] and thus could be 

coupled with its overall process (cf. Figure 3) in order to enable 

relevant multimedia fragmentation. Due to the space limitation, 

value and operator neighborhood computation will not be 

detailed here since the main definitions have been already 

covered previously. 

 

 

 

 

 

 
 

 

Fragmentation_pre-processing ()      // Developed in [Saad et al. 2006] to the exception  

                                                           // of semantic implication. 

Begin 

Multimedia_Types_Classification()    //Classifying multimedia objects according to their types 

For each multimedia Type 

Predicates_Grouping()     //Grouping low-level and semantic predicates together 

Multimedia_Predicates_implication()        // Low-level predicates implications 

Semantic_Predicates_Implication()      // Contribution of our study. 

End For 

End 
 

Figure 3. Multimedia fragmentation pre-processing phase 

introduced in [17], which is to be executed prior to applying 

the classic fragmentation algorithms 



5.1 Value Implication 
A value Vi implies Vj if the corresponding value concepts Vci and 

Vcj are such as the global neighborhood of Vci includes that of Vcj 

in the used value knowledge base: 

 

    ( )  ( )   
KB KBi j V j V iV V If N Vc N Vc   (3) 

Note that when Vi and Vj are synonyms, that is when Vci and Vcj 

designate the same value concept (e.g. car and automobile), 

implication exists in both directions: Vi   Vj and Vj   Vi. 

Known as equivalence implication, it is designated as Vi   Vj. 

         ( ) ( )   
KB KBi j V i V jc cV V If N V N V   (4) 

 

Our Value_Implication algorithm is developed in Figure 4. The 

algorithm returns values comprised in {0, -1, 1, 2} where: 

 ‘0’ denotes the implication absence between the compared 

values, 

 ‘-1’ designates that value Vj implies Vi, 

 ‘1’ designates that value Vi implies Vj, 

 ‘2’ designates that values Vi and Vj are equivalent. 
 

A special case of value implication to be considered is when sets of 

values are utilized in multimedia predicates. This occurs when set 

operators come to play (e.g. Keywords = ANY {“Eiffel Tower”, 

“Coliseum”} and Keywords = ANY {“Paris”, “Rome”}). The 

algorithm for determining the implication between two sets of 

values is developed in Figure 6. It considers each set of values in 

isolation and, for each value in the set, computes the neighborhood 

of the value. Subsequently, it identifies the union of all the 

neighborhoods of values for the current set (cf. Figure 6, lines 1-7), 

and compares the ‘unioned’ neighborhoods of the two sets being 

treated so as to determine the implication (cf. Figure 6, lines 8-17). 

In other words, when comparing sets VS1 and VS2: 

 If |VS1| < |VS2| and all values of VS2 imply (or are equivalent 

to) those of VS1, then the set VS2 implies VS1 (i.e. the 

neighborhood of VS2 includes that of VS1). 

 If |VS1| > |VS2| and all values of VS1 imply (or are equivalent 

to) those of VS2, then the set VS1 implies VS2 (i.e. the 

neighborhood of VS1 includes that of VS2). 

 Otherwise if |VS1| = |VS2|, then: 

 VS1 is equivalent to VS2 when all values of VS1 are 

equivalent to those of VS2 (i.e. the neighborhoods of VS1 

and VS2 are identical). 

 VS1 implies VS2 when all values of VS1 imply those of 

VS2, i.e. the neighborhood of VS1 encompasses that of 

VS2: )( ) (
KB KBV 2 V 1N VS N VS  

 VS2 implies VS1 when all values of VS2 imply those of 

VS1, i.e. )( ) (
KB KBV 1 V 2N VS N VS  

 Otherwise, there is no implication between VS1 and VS2. 

 

For example, applying Value Set implication to sets VS1 = {“Eiffel 

Tower”, “Coliseum”} and VS2 = {“Paris”, “Rome”} yields VS1 

  VS2 having: 

 

 |VS1| = |VS2| 

 all values of VS1 imply those of VS2: Eiffel Tower   

Paris and Coliseum   Rome (cf. Figure 1). 

5.2 Operator Implication 
Similarly, an operator θi implies θj (θi θj) if the corresponding 

operator concepts Oci and Ocj are such as the global neighborhood 

of θi includes that of θj, following the operator knowledge base 

defined in Section 4.1.2. We formally write it as: 

         ( ) ( )   
KB KBi j O j ic cIf N O N O    (5) 

As well, when θi and θj are synonyms (e.g. =any      and =some 

following θKB), equivalence implication exists in both directions:  

         ( ) ( )    
KB KBi j O i O jc cIf N O N O    (6) 

The Operator_Implication algorithm is developed in Figure 5. It 

returns values comprised in {0, -1, 1, 2}: 

 ‘0’ denoting the lack of implication between the 

operators’ values, 

 ‘-1’ designating that operator θj implies θi, 

 ‘1’ designating that operator θi implies θj, 

 ‘2’ when operators θi and θj are equivalent. 

5.3 Predicate Implication 

 

   and     

P P     and    

   and   

i j i j

i j i j i j

i j i j

θ θ V V , or

if θ θ V V , or

θ θ V V

 

  

 

 
 
 
 
 

 (7) 

Let Pi = Ai θi Vi and Pj = Aj θj Vj be two predicates employing 

comparison or set operators. The implication between Pi and Pj, 

denoted as Pi   Pi, occurs if the operator and value (set of values) 

of Pi (θi and Vi) respectively imply those of Pj (θj and Vj), or the 

value (set of values) part of Pi (Vi) implies that of Pj (Vj) when 

having equivalent operators. 

When both pairs of values (sets of values) and operators are 

equivalent, the corresponding predicates are equivalent as well: 

P P     and   
i j i j i j

if θ θ V V      (8) 

Our Semantic Predicate Implication (SPI) algorithm, developed in 

Figure 7, utilizes the preceding rules to generate the semantic 

predicate Implications Set (IS) for a given multimedia type. The 

implications are designated as doublets (Pi   Pj). Note that in SPI, 

the input parameters of Value_Implication and 

Value_Set_Implication between brackets, i.e. Vi and Vi+1, designate 

single values and set values respectively following the considered 

predicate (cf. Definition 4). 

 



Value Implication: 
 

Input: Vi , Vj , VKB      // VKB is the reference value KB. 

Output: {0, -1, 1, 2}  // A numerical value indicating 

                                   // if Vi   Vj (0), Vj   Vi (-1) , 

                              // if Vi   Vj (1) or if Vi   Vj (2) 

Begin                                                                     1 

If ( ( )  ( )
V i V j

KB KB
N Nc cV V ) 

Return 2      // synonyms, Vi   Vj 
 

Else If ( )  ( )
V j V i

KB KB
N Nc cV V           

Return 1         // Vi   Vj                                  5 
 

Else If ( )  ( )
V i V j

KB KB
N Nc cV V  

Return -1        // Vj   Vi 
 

Else 
Return 0       // There is no implication           

 

End If       // between Vi and Vj, Vi   Vj          10 
 

End 
 

Figure 4. Identifying semantic implications  

between textual values 
 

 

5.4 Algorithm Complexity 
The computational complexity of our Semantic Predicate 

Implication (SPI) is estimated on the basis of the worst case 

scenario. Suppose nc represents the number of concepts in the 

concept knowledge base considered, d the maximum depth in the 

concept knowledge base considered, npv the number of user 

predicates with single values, npvs the number of predicates with 

value sets, and nv the maximum number of values contained in a 

value set. SPI algorithm is of time complexity O(npv
2 nc d+ 

npvs
2 nv nc d ) since: 

 

 The neighborhood of a concept is generated in O(nc   d) 

time, which comes down to the complexity of algorithm 

Value_Implication. 

 The neighborhood of an operator is generated in constant 

time: O(1), which comes down to the time complexity of 

algorithm Operator_Implication. Therefore, identifying 

implications for predicates with simple values is of time 

complexity O(npv
2 nc d). 

 The Value_Set_Implication algorithm is of complexity 

O(nv nc d) 

 

Subsequently, identifying semantic implications for predicates with 

value sets is of time complexity O(npvs
2 nv nc d). 

 

Operator  Implication: 

Input: θi , θj , OKB   // OKB is the reference operator KB 

Output: {0, -1, 1, 2}   // A numerical value indicating   

                                    // if θi   θj (0), if θj   θi (-1) 

                               // if θi   θj (1), or if θi   θj (2) 

Begin                                                                     1 

 If( ( )  ( )
O i O j

KB KB
cO OcN N ) 

Return 2      // synonyms, θi   θj 

Else If ( )  ( )
O j O i

KB KB
c cO ON N           

Return 1       //  θi   θj                                     5 

Else If ( )  ( )
O i O j

KB KB
c cO ON N  

Return -1             // θj   θi 

Else 

Return 0   // There is no implication between          

 End If           // θi and θj, θi   θj                                10 

End 
 

Figure 5. Identifying implications between operators 
 

Value Set Implication: 

Input: VS1, VS2, VKB  // value sets to be compared w.r.t. VKB 

Output: {0, -1, 1, 2}    

Begin                                                                               1 

      For each value Vi in VS1         // Neighborhood of VS1 

         ( )  = ( )  ( )
V V V

KB KB KB
N N N

1 1 i
VS VS Vc     

      End for   

      For each value Vj in VS2     // Neighborhood of VS2    5 

         ( )  = ( )  ( )
V V V

KB KB KB
N N N

2 2 j
VS VS Vc             

      End For 

If  ( )  ( )
V 1 V 2

KB KB
N NVS VS  

Return 2       // VS1   VS2 

Else If ( )  ( )
V 2 V 1

KB KB
N NVS VS                    10 

Return 1      // VS1   VS2                          

Else If ( )  ( )
V 1 V 2

KB KB
N NVS VS  

Return -1      // VS2   VS1 

Else 
Return 0   // There’s no implication                   15                                                                                            

End If               // between VS1 and VS2, VS1   VS2        

End     
 

Figure.6 Value sets implication algorithm 
 

 

 

 



6. IMPLEMENTATION 

6.1 Prototype 
To validate our approach, we have implemented a C# prototype 

entitled “Multimedia Semantic Implication Identifier” (MSI2) 

encompassing: 

 

 A relational database, storing multimedia objects via 

Oracle 9i DBMS, 

 Relational tables for storing the reference value 

knowledge base VKB and the operator knowledge base 

OKB. Note that OKB is constant (cf. Figure 2), 

 An interface allowing users to formulate multimedia 

queries. 
 

In Figure 8, we show how the prototype accepts a set of input 

multimedia queries. Automatic processes subsequently calculate 

query access frequencies, identify corresponding predicates, and 

compute for each multimedia type (cf. Definition 2) its Predicate 

Usage Matrix (PUM) and its Predicate Affinity Matrix (PAM), 

introduced in [1, 15]. The PAM is used to underline the affinity 

between predicates, implication being a special kind of affinity. 

The PUM and PAM make up the inputs to the primary horizontal 

partitioning algorithm: Make_Partition [15] or Com_Min [14].  

6.2 Timing Analysis 

We have shown that the complexity of our approach (SPI and 

underlying algorithms) simplifies to O(npvs
2 nv

2 nc d). It is 

quadratic in the size of user predicates (npvs), value set 

cardinalities (nv
2), and the size of the value knowledge base VKB 

considered (nc d). We have verified those results experimentally. 

Timing analysis is presented in Figure 9. The experiments were 

carried out on Pentium 4 PC (with processing speed of 3.0 GHz, 

504 MB of RAM). Note that in these experiments, a special 

process was developed using C# for timing analysis. Large 

amounts of semantic predicates (that uses our proposed operator 

knowledge base provided in Section 4.5.2) were generated in a 

random fashion, predicate numbers as well as value-set 

cardinalities being under strict user control. Multiple value 

knowledge bases with varying depth and number of concepts were 

also considered. Similarity computations and timing analysis were 

done repeatedly. In both graphs of Figure 9, the x-axis represents 

the number of predicates and y-axis shows the time needed to 

compute semantic implications. One can see from the result that 

the time needed to compute semantic implications grows in a 

polynomial (quadratic) fashion with the number of predicates 

involved. Figure 9.a shows the impact of the value-set 

cardinalities, whereas Figure 9.b reflects the effect of the VKB size.  

Recall that the reference value knowledge base VKB and operator 

knowledge base OKB are stored in a relational database and are 

queried for each value and operator in the concerned predicates 

when identifying implication. As a result, querying the VKB 

knowledge base for each predicate value requires extra time 

(database access time) and hence contributes to increasing time 

complexity. Therefore, we believe that overall system 

performance would improve if the reference VKB knowledge base 

could fit in primary memory. 

 

 

Semantic Predicate Implication (SPI): 

 

Input: P , VKB, OKB         // P is the set of predicates utilizing semantic 

operators,  

                                           // applied on a given multimedia type to be 

fragmented. 

Output: IS                    // Set of semantic predicate implications. 

Variables: Implication Operator , ImplicationValue 

Begin                                                                                             1 

For each Pi in P 

For each Pi+1 in P 
 

ImplicationOperator = Operator_Implication(θi , θi+1, OKB) 

If (θi , θi+1 ε { θc any, θc some, θc all, In}   // Set operators      5 

ImplicationValue = Value_Set_Implication (Vi , Vi+1, VKB)                    

Else                                      // Mono-valued operators 

ImplicationValue = Value_Implication(Vi , Vi+1, VKB)                            

End If  
 

If (ImplicationOperator == 2)         // θi   θi+1                        10                               

 

If (ImplicationValue == 2)                    // Vi   Vj 

IS = IS  (Pi  Pj) 

  Else If (ImplicationValue == 1)            // Vi   Vj 

IS = IS  (Pi  Pj)                                                        

  Else If (ImplicationValue == -1)       // Vj   Vi                  15 

IS = IS  (Pj   Pi) 

End If                                                                                                           

 

Else If (ImplicationOperator == 1)                       // θi   θj 
 

If(ImplicationValue == 2 or ImplicationValue == 1)   // θi   θj      

IS = IS  (Pi   Pj)                                              20    

End If 

 

Else If (ImplicationOperator == -1)                      // θj   θi 

   

If (ImplicationValue == 2 or ImplicationValue == -1) // Vj   

Vi   

IS = IS  (Pj   Pi)                                                       

EndIf                                                                              25 

End If 

End For                                                                                                                               

End For                                                                                                                                       

End                                                                                                                        

Figure 7. Algorithm SPI for identifying the semantic 

implications between predicates 

 

 

 



 
 

Figure 8. Screen shot of the MSI 

2 PUM and PAM interface. 

 

 

a. Varying value set cardinalities 

 

b. Varying VKB size (depth and number of concepts)  

Figure 9. Timing results regarding the number of predicates, 

value set cardinalities, and VKB size 

7. CONCLUSION 
In this paper, we addressed the primary horizontal 

fragmentation in multimedia databases and provided a new 

approach to be used with existing fragmentation techniques. We 

particularly studied semantic-based predicates implication 

required in current fragmentation algorithms in order to 

partition multimedia data efficiently. We put forward a set of 

algorithms for identifying implications between semantic 

predicates on the basis of operator and value implications. 

Operator implications are identified utilizing a specific operator 

knowledge base developed in our study. On the other hand, 

value implications are discovered following domain-oriented or 

generic value concept knowledge bases such as WordNet. We 

developed a prototype to test our approach.  

In the near future, we aim to thoroughly assess our 

approach’s efficiency via a comparative study so as to show the 

improvement in fragmentation quality, i.e. the improvement in 

data access time, w.r.t. existing fragmentation techniques. Our 

future directions include studying derived horizontal 

fragmentation of multimedia data, optimizing traditional methods 

by taking into account semantic and low-level multimedia 

features. Likewise, multimedia vertical fragmentation and XML 

fragmentation will also be addressed in upcoming studies. In 

addition, we plan on releasing a public version of our prototype 

after integrating low-level multimedia implications.  
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